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Abstract	
New	digital	technological	advancements	are	giving	rise	to	the	fourth	industrial	revolution,	commonly	termed	as	
Industry	4.0,	in	which	the	physical	and	the	digital	world	merge	and	the	boundary	between	products	and	services	
blurs.	 This	 transformation	 is	powered	by	 smart,	 autonomous	objects	 that	 communicate	and	 interact	 among	
themselves	or	with	actors	through	the	connected,	multi-loop,	and	multi-layer	network	of	Internet	of	Things	and	
Services.	These	interconnected	smart	objects	create,	carry,	and	share	large	volumes	of	data,	leading	to	many	
potential	opportunities	for	creating	value	from	such	data.	Albeit	particularly	Big	Data	has	been	a	much-discussed	
term	in	research	concerning	the	Industry	4.0	paradigm,	the	role	of	knowledge,	especially	tacit	knowledge	has	
been	neglected	 thus	 far.	 Furthermore,	a	 conceptual	model	 that	would	provide	an	aggregated	 framework	 to	
understand	knowledge-based	activities	and	flows	does	not	exist	yet.	In	this	paper,	we	attempt	to	bridge	this	gap	
by	firstly	critically	examining	and	clarifying	the	terms	data,	information,	and	tacit	knowledge	by	drawing	upon	
relevant	 knowledge	 management	 theories,	 foremost	 on	 Polanyi`s,	 a	 common	 (albeit	 often	 misinterpreted)	
reference	point	for	his	successors.	Then,	by	reviewing	and	analyzing	related	literature,	we	develop	a	conceptual	
model	of	knowledge	dynamics	in	the	Smart	Grid	ecosystem,	which	is	one	of	the	potential	application	fields	of	
Industry	4.0.	Specifically,	we	conceptualize	main	components	and	their	relations,	and	describe	how	knowledge-
based	activities	are	embedded	 in	 the	multi-feedback	 loop	and	multi-layer	network	of	 Internet	of	Things	and	
Services.	We	exemplarily	outline	a	use	case	–	a	Smart	Grid	program	of	CLP	Holdings	Limited,	the	largest	supplier	
of	electricity	in	Hong	Kong	–	as	an	example	of	how	value	is	co-created	through	knowledge	dynamics	within	such	
ecosystems.	 Furthermore,	we	 discuss	 the	 theoretical	 and	 practical	 implications	 of	 the	 emerging	 knowledge	
dynamics	model	for	the	design	of	knowledge	management	systems.	
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1. Introduction	
A	new	industrial	revolution	is	starting	to	take	place,	commonly	termed	as	Industry	4.0.	For	the	first	time	the	
revolution	is	predicted	a-priori,	not	observed	a-posteriori,	which	enables	public	and	private	sectors	to	actively	
create	the	future	as	it	unfolds	(Hermann	et	al.,	2016).	The	wide	interest	in	Industry	4.0	is	evidenced	by	numerous	
research	and	strategic	initiatives	proposed	by	main	industrial	countries,	which	aim	to	develop	more	intelligent	
and	 sustainable	 industrial	 systems.	 The	 term	 itself	 became	 publicly	 known	with	 a	 strategic	 initiative	 called	
“Industrie	4.0”	which	is	a	part	of	the	German	government`s	“High-Tech	Strategy	2020	Action	Plan.”	Similarly,	
China	announced	its	research	initiative	“Made	in	China	2025”	and	USA	it`s	initiative	“Industrial	Internet”.		
Industry	 4.0	 provides	 several	 application	 fields:	 smart	 production,	 smart	 grids,	 smart	 logistics,	 and	 smart	
healthcare	(Leitao	et	al.,	2016).	Our	knowledge	dynamics	exploration	in	Industry	4.0	is	informed	by	industrial	
smart	grids	(SG).	The	foundation	of	SG	is	strong	coupling	of	digital	technologies	with	the	physical	energy	domain,	
particularly	via	mass	deployment	of	smart	objects	(SO),	i.e.	networked	embedded	devices	(e.g.	home	appliances,	
electric	vehicles).	The	symbiosis	of	digital	and	physical	domain	enables	bidirectional	energy	and	communication	
flows	among	participating	entities	and	promises	to	equip	physical	resources	with	adaptive	emergent	capabilities	
that	commonly	characterize	social	and	biological	systems	(Leitao	et	al.,	2016).	These	characteristics	 lead	to	a	
distributed,	reconfigurable,	hyper	collaborative	and	interconnected	industrial	environment	which	enables	new	
interaction	patterns	and	business	models.	Particularly,	penetration	of	 “service	dominant	 logic”	 (Lusch	et	al.,	
2007)	blurs	the	line	between	products	and	services,	and	leads	towards	product-service	system	business	models,	
characterized	 by	 always-responsive	 situated	 services	 built	 around	 customer	 needs	 (Miorandi	 et	 al.,	 2012;	
Monostori,	2014).	
The	shift	towards	responsive	and	situated	service	provisioning	is	brought	to	the	table	by	a	huge	amount	of	fine-
grained	data,	collected,	stored,	and	processed	by	SO.	Thus,	organizations	seek	to	find	processes	to	turn	such	big	
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data	into	knowledge	and	meaningful	insights.	Whereas	these	processes	can	be	automated	to	a	great	extent	by	
using	big	data	analytical	tools,	so	far	not	sufficiently	considered	is	the	role	of	humans	in-the-loop	(Gandomi	and	
Haider,	 2015;	 Leitao	 et	 al.,	 2016).	 This	 is	 particularly	 relevant	 for	 Industry	 4.0,	 which	 is	 characterized	 by	
democratizing	 access	 to	 data,	 i.e.	 opening	 data	 to	 various	 stakeholders	 via	 diverse	 web-based	 or	 mobile	
applications,	which	provides	more	possibilities	for	their	engagement.	It	becomes	important	to	leverage	on	these	
open	data	by	making	 it	available	to	the	right	stakeholders	at	the	right	time	to	support	their	decision	making	
(Marr,	2017).	Taking	the	“human	factor”	into	consideration	raises	questions	such	as:	What	is	the	role	of	human	
knowledge	 in	 unlocking	 the	 value	 of	 big	 data?	How	 can	humans	 interact	with	 SO	and	make	 sense	 of	 by	 SO	
generated	 data?	 Whereas	 existing	 contributions	 partially	 analyse	 these	 topics,	 a	 holistic	 perspective	 that	
integrates	various	theoretical	strands	regarding	knowledge-related	activities	that	lead	to	value	creation	in	SG	
does	not	exist	yet.		
In	this	paper,	therefore,	we	conceptualize	a	model	of	knowledge	dynamics	as	an	underlying	mechanism	of	the	
emergent	behaviour	that	promises	to	bring	new,	more	sustainable	value	chains	 in	SG	industrial	systems.	But	
firstly,	we	begin	by	reconsidering	knowledge	theories	and	seeking	answers	to	epistemologically	fundamental	
questions	 such	 as	What	 is	 nature	 of	 knowledge?	 (2.1)	 and	What	 is	 relationship	 between	 knowledge	 and	
technology?	 (2.2).	 Furthermore,	 we	 discuss	 issues	 of	 modelling	 knowledge	 dynamics	 (2.3).	 Afterwards,	 by	
analysing	current	literature,	we	extract	components	of	SG	which	are	applied	in	the	conceptual	model	(3.1)	and	
describe	its	operational	mechanism	as	an	enabler	of	the	value	chains	that	it	creates	(3.2).	Subsequently,	based	
on	 the	 publicly	 available	 documentation	 and	 the	 interview	with	 a	manager	 in	 charge	 of	 SG	 program,	 as	 an	
example	case,	we	highlight	the	efforts	within	CLP	Holdings	Limited	pilot	projects	and	currently	offered	services	
(3.3).	The	paper	closes	with	a	discussion	of	the	implications	of	the	proposed	model	(4)	and	a	conclusion	(5).	

2. Knowledge	dynamics	

2.1 Dual	nature	of	knowledge	
There	are	two	major	streams	in	the	philosophy	of	knowledge	literature	that	can	be	identified	–	one	rooted	in	
positivism	–	which	perceives	knowledge	as	an	artifact	that	can	be	deconstructed	into	discrete	units,	and	another	
in	constructivism	–	which	perceives	knowledge	as	socially	constructed	and	embedded	in	practice	(Hislop,	2002;	
Stenmark,	2002).	One	of	the	positivists’	foundational	assumption	is	the	tacit-explicit	knowledge	dichotomy,	i.e.	
that	 knowledge	 can	be	 divided	 into	 two	 types	with	 distinct	 features	 (e.g.	Nonaka	 and	 Takeuchi,	 1995).	 The	
constructivists’	underlying	assumption,	on	the	contrary,	is	the	duality	of	knowledge,	i.e.	that	tacit	and	explicit	
knowledge	are	indivisible	and	mutually	constituted	(Polanyi,	1966;	Stenmark,	2002;	Tsoukas,	2005).		
We	 base	 our	 understanding	 of	 knowledge	 on	 Polanyi`s	 (1966)	 theory,	 which	 is	 grounded	 in	 constructivist	
rationale.	He	is	pondering	knowledge	in	terms	of	the	duality,	 i.e.	knowing	occurs	in	the	dynamic	interactions	
between	always	present	subsidiary	tacit	knowledge	components	and	a	focal	target	(Polanyi,	1966).	For	example,	
a	pianist	has	the	ability	to	play	the	piano,	i.e.	tacit	knowledge	enables	him	to	perform	the	action	of	playing	a	
piano.	 However,	 the	 pianist	 is	 only	 subsidiary	 aware	 of	 such	 knowledge	 –	he	 knows	more	 than	 he	 can	 tell	
(Polanyi,	1966).	The	object	of	his	focal	awareness	is	the	music	itself.	An	attempt	to	focus	on	the	technical	ability,	
e.g.	on	how	to	move	his	fingers,	would	make	his	“performance	clumsy	to	the	point	of	paralyzing	it”	(Tsoukas,	
2005).	Since	the	integration	of	the	subsidiaries	to	the	focal	target	relies	on	the	internal	tacit	act,	tacit	knowing	is	
inherently	 inarticulable	 (Polanyi	 and	 Prosch,	 1977).	 Polanyi	 furthermore	 claims	 that	 even	 what	 often	 is	
considered	to	be	detached	objective	knowledge,	such	as	a	mathematical	theory,	“can	be	only	constructed	by	
relying	on	prior	tacit	knowing	and	can	function	as	a	theory	only	within	an	act	of	tacit	knowing”	(Polanyi	1966:	
20).	Thus,	in	the	case	of	our	piano	player,	his	music	will	be	differently	“heard”	by	every	individual	depending	on	
the	personal	knowledge	which	includes,	among	other,	personal	commitments,	skills	and	judgments;	equally,	the	
interpretation	of	music	notes	will	vary	for	the	same	reasons	(see	Fig.	1).	
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Figure	1	Dynamic	relations	that	comprise	knowing	
	
The	dual	notion	of	knowledge,	as	introduced	by	Polanyi,	implies	the	intrinsic	emergent	property	of	knowledge:	
knowledge	 is	 an	 “act	 of	 relating”	 (Kakihara	 and	 Sørensen,	 2002).	 Polanyi`s	 notion	 of	 knowledge	 was	 often	
misinterpreted	by	his	successors,	most	notably	Nonaka	and	Takeuchi	(1994).	They	posited	that	tacit	knowledge	
can	be	converted	–	to	great	degree	-	to	explicit	knowledge,	i.e.	that	it	can	be	articulated	in	a	form	of	concepts,	
models,	 hypotheses,	 metaphors,	 or	 analogies.	 However,	 such	 a	 view	 is	 not	 congruent	 with	 Polanyi`s,	 who	
considers	tacit	as	indivisible	and	essentially	unspecifiable	part	of	all	knowledge.	

2.2 Knowledge	and	technology	
In	 knowledge	 management	 literature,	 particularly	 when	 discussing	 relationship	 between	 knowledge	 and	
technology,	 it	 is	often	emphasized	that	 it	 is	valuable	 to	differentiate	data,	 information,	and	knowledge.	One	
important	point	of	discussion	is	whether	human	knowledge	can	be	formally	described	so	that	a	digital	machine	
can	handle	 it.	Positivists	would	seek	to	utilize	technology	for	handling	a	representationistic	understanding	of	
knowledge.	Constructivists,	on	the	contrary,	would	argue	that	human	knowledge	cannot	be	separated	from	the	
knower	 and	 that	 what	 can	 be	 found	 outside	 in	 a	 formalized,	 explicit	 form	 is	 merely	 data	 and	 information	
(Stenmark,	 2002).	 While	 arguing	 that	 tacit	 components	 of	 knowing,	 since	 inherently	 unspecifiable,	 remain	
beyond	calculative	rationality	that	computers	can	simulate,	we	believe	that	it	is	useful	to	use	the	term	machine	
knowledge.	Whereas	what	constitutes	these	concepts	inevitably	alters	with	advances	in	technology,	the	essence	
remains:	they	are	based	on	logic	that	can	be	specified	and,	thus,	programmed	and	automated	(Ackoff,	1989).		
Further	consequential	argument	adopted	by	constructivist	is	that	there	is	no	“raw	data”;	data	emerge	as	result	
of	a	pre-defined	data	structure,	which	defines	the	meaning	of	the	phenomena	sensed	from	the	environment	
(Tuomi,	 1999).	While	 acknowledging	 the	possibility	 that,	 due	 to	unique	 tacit	 background	of	 the	 interpreter,	
“what	one	conceives	as	information	another	sees	as	data”	(Stenmark,	2002),	we	consider	t	as	useful	to	differ	
the	two	in	terms	of	their	functional	differences	(Ackoff,	1989).	Thus,	one	way	is	to	perceive	information	as	data	
that	is	processed	into	a	usable	form	(Table	1).		
	
Table	1	Knowledge	entities:	definitions,	properties,	and	activities	

	
	 DATA	 INFORMATION	 MACHINE	

KNOWLEDGE	
HUMAN	KNOWLEDGE	

Definition	

Symbols	that	
represent	

properties	of	
objects,	events	

Descriptions,	
processed	data	into	

usable	form	

Ability	to	apply	
programmed	
instructions,	

learn	

Act	of	relating,	dynamic	
capability	

	

Properties	 Based	on	logic	that	can	be	programmed	and	automated	 Emergent,	depended	on	
personal	knowledge	

Knowledge-
based	activities	 Data	processing	and	analytics	 Sense-making,	dialoguing	

with	data	
	

Adoption	 of	 the	 constructivist	 view	 on	 knowledge	 has	 important	 implications	 on	 the	 perception	 of	 the	
relationship	between	humans	and	machine-generated	data	and	information.	Since	the	“act	of	personal	insight”	
is	 inherent	 to	 the	act	of	 knowing	 (Tsoukas,	2005),	human	active	 involvement	 is	 still	 required.	Whereas	data	
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analytics	are	just	one	stage	in	unlocking	value	of	data,	humans	still	need	to	make	sense	of	reports	(new	data	and	
information),	which	is	“a	motivated,	continuous	effort	to	understand	connections	[…]	in	order	to	anticipate	their	
trajectories	 and	 act	 effectively”	 (Klein	 et	 al.,	 2006).	 This	might	 involve	 critically	 testing	 assumptions,	 tracing	
backward	the	analysis,	and	discarding	some	aspects	of	the	data	(Labrinidis	and	Jagadish,	2012).	Insights,	then,	
emerge	as	a	result	of	sense-maker`s	engagement	with	the	data,	and	will	vary	depending	on	the	sense-makers’	
personal	knowledge.	This	is	“a	process	of	dialogue	rather	than	one	of	discovery”;	insights	can	only	be	“evoked	
by	the	data”	but	cannot	be	“explained	from	the	data”	(Bryant	and	Raja,	2014).	
In	Industry	4.0	context	machines	are	capable	of	(deep)	learning,	adjusting	and	acting	in	its	environment,	such	as	
in	the	case	when	they	exploit	neural	networks	that	aim	to	mimic	the	thought	and	decision-making	process	of	
humans.	 Still,	 humans	 handle	 resulting	 data	 indifferently.	 Machines,	 hence,	 can	 only	 be	 considered	 as	 a	
supporting	part	in	collective	sense-making	processes.	

2.3 Modeling	knowledge	dynamics	

Existing	models	of	 knowledge	dynamics	have	 limitations	 in	 representing	 the	dynamic,	emergent	property	of	
knowledge.	They	are	based	on	two	metaphors:	knowledge	as	a	flow,	which	focuses	on	how	knowledge	moves	
through	 organizations	 and	 knowledge	 as	 a	 process,	 which	 focuses	 on	 explicit	 knowledge	 or	 knowledge	
conversions	between	tacit	and	explicit	knowledge	(Bratianu	2016).	Both	conceptualizations	are	largely	rooted	
in	the	positivistic	logic,	and	disregard	the	fact	that	paradoxically	and	simultaneously	knowledge	is	both	a	thing	
and	a	flow.	They	do	not	acknowledge	that	tacit	knowledge	can	only	be	displayed	in	human	actions,	and	that	
thereby	knowledge	dynamics	model	–	instead	of	attempting	to	operationalize	it	(Ambrosini	and	Bowman	2001)	
–	 should	 identify	 spaces	 of	 human-human	 and	 human-machine	 interaction	 which	 enable	 emergence	 of	
knowledge.	In	such	an	attempt,	it	might	be	useful	to	build	on	Nonaka	and	Konno`s	Ba	(1998)	as	a	“shared	space	
for	emerging	relationships.”	Ba	can	be	mental	(e.g.	shared	experiences),	virtual	(e.g.	networks),	or	a	physical	
place	(e.g.	factory).	Moreover,	Ba	unifies	these	spaces	“in	order	to	profit	from	the	‘magic	synthesis’	of	rationality	
and	intuition”	that	creates	knowledge	(Nonaka	and	Konno,	1998).	Ba	is	a	context	which	provides	the	basis	for	
human	 interpretation	 of	 information	 to	 create	 meanings	 and	 knowledge	 through	 action	 and	 interaction;	
knowledge	resides	in	Ba,	and	if	separated	from	Ba,	it	becomes	information	(Nonaka	and	Konno,	1998).		

		
Figure	2	Ba:	Topological	space	for	knowledge	emergence	
	
Ba,	since	it	exists	in	terms	of	relationship,	and	it	permits	to	relate	human	interaction	and	emergent	property	of	
knowledge	 to	 knowledge	practice,	 seems	 to	 be	 a	 useful	 concept	 to	 utilize	 as	 a	 building	block	 in	 knowledge	
dynamics	modelling.	 

3. Conceptual	model	of	knowledge	dynamics	in	smart	grid	scenario	

3.1 Theoretical	underpinnings	
(Hermann	et	al.,	2016)	provide	a	useful	basis	for	developing	utilized	constructs	within	the	conceptual	model.	
They	identify	components	for	implementation	of	Industry	4.0.	However,	since	they	perceive	smart	factories	as	
“key	 ingredient	 of	 Industry	 4.0”,	 their	 analysis	 and	 descriptions	 of	 components	 focuses	 primarily	 on	 smart	
manufactories.	We	adopt	their	framework	by	reviewing	current	literature	on	SG	and	identifying	industry	specific	
components.	Overall,	we	 identify	 five	main	 components:	Smart	 objects,	Smart	 grid,	Cloud-based	 Internet	 of	
Things	 and	 Services,	 and	 Humans	 in-the-loop.	 As	 a	 critical	 difference	 to	 Hermann	 et	 al.	 (2016),	 we	 involve	
Humans	in-the-loop	as	an	independent	component.	

3.1.1 Smart	objects	

SO	are	characterized	by	their	cyber-physical	nature,	that	is,	the	symbiosis	between	their	physical	function	and	
the	abstract	 representation	of	 this	 function	 in	 the	virtual	space.	By	complementing	their	 functionalities	with	
more	powerful	ones	operating	in	the	cloud,	even	resource-constrained	objects	of	the	physical	world	situated	on	
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the	“edge”	of	the	system	such	as	home	appliances	become	digitally	accessible	and	manageable	(Karnouskos,	
2014).	SO	are	uniquely	identifiable,	localizable,	and	capable	of	interacting	with	each	other	and	humans	(Minerva	
et	al.,	2015).	As	a	particular	characteristic	of	Industry	4.0,	advanced	data	mining	algorithms	are	integrated	within	
SO	as	dispersed	parts	of	the	system,	facilitating	distributed	big	data	analytics	(Leitao	et	al.,	2016).	This	enables	
SO	to	perform	complex	autonomous	acts,	i.e.	to	realize	self-x	properties	such	as	self-learning	or	self-healing.	

3.1.2 Cloud-based	Internet	of	Things	and	Services		

SO	interact	with	each	other	or	with	humans	through	the	“self-configuring,	adaptive,	complex	network”	(Minerva	
et	al.,	2015)	of	 Internet	of	Things	 (IoT).	 In	 Industry	4.0	 IoT	 is	coupled	with	 Internet	of	Services,	 i.e.	ability	of	
service	providers	to	offer	their	services	via	Internet	(Hermann	et	al.,	2016).	In	this	way,	a	shift	occurs	from	IoT	
as	 a	 network	 that	 connects	 end-user	 devices	 to	 Internet	 of	 Things	 and	 Services	 (IoT&S)	 as	 a	 network	 that	
connects	physical	objects	and	humans	-	customers	and	providers	-	in	order	to	offer	particular	services.	Utilization	
of	 cloud	computing	 -	paradigm	 in	which	 services	 such	as	 computation,	 storage,	and	network	are	offered	on	
demand	over	the	internet	-	leads	towards	a	cloud-based	IoT&S,	enhances	cloud-centric	interactions,	and	brings	
even	more	flexibility	and	connectivity	into	industrial	systems	(Karnouskos,	2014).	

3.1.3 Smart	grid	

SG	are	“power	networks”	that	intelligently	integrate	the	behaviors	and	actions	of	all	stakeholders	connected	to	
it”	with	a	goal	to	“efficiently	deliver	sustainable,	economic,	and	secure	electricity	supplies”	(Alahakoon	and	Yu,	
2016).	The	key	building	block	of	a	SG	is	the	Advanced	Metering	Infrastructure	(AMI)	which	enables	deployment	
of	smart	meters	(SM)	at	end	user	points,	and	allows	bi-directional	communication	of	fine-grained	monitoring	
data	captured	by	SM	both	within	SM	utility,	and	among	SM	utility	and	the	cloud.	Integration	of	AMI	in	utilities	
such	as	homes	transforms	these	utilities	into	smart,	partially	autonomous,	sub-systems	where	SO	interoperate	
to	provide	optimized	energy	control.		

3.1.4 Humans	in-the-loop	

One	of	the	key	purposes	of	the	SG	architecture	 is	to	enable	real-time	decision	making	based	on	real-time	or	
“active”	data	that	is	harnessed	from	SM	and	other	SO.	Humans	in-the-loop,	a	so	far	not	sufficiently	addressed	
component	of	 Industry	4.0,	requires	taking	 into	consideration	questions	such	as	of	 their	application	domain,	
operations	performed,	and	type	of	data	exchanged	with	the	system	(Leitao	et	al.,	2016).	Furthermore,	it	brings	
to	attention	the	questions	of	human-machine	interaction	and	role	of	human	knowledge.	Key	stakeholders	in	SG	
make	management	decisions,	 regarding,	 for	example,	energy	 trading,	managing	customer	 relationships,	grid	
infrastructure	optimization,	or	energy	management.	

3.2 Operational	mechanism	

Insights	obtained	from	the	literature	review	form	the	basis	of	the	model.	Information	about	the	domains	comes	
from	 the	NIST	 classification	 (Greer	 et	 al.,	 2014).	We	 describe	 how	 interactivity	 of	 actors,	 i.e.	 entities	which	
perform	knowledge-based	activities	(humans,	SO,	and	computational	systems	embedded	in	the	cloud),	enables	
data	and	information	flows,	and	emergence	of	knowledge.	Interactivity	in	SG	occurs	vertically,	i.e.	cross-level	
within	the	levels	of	the	enterprise	system	and	horizontally,	i.e.	cross-domain	through	dispersed	value	networks.	
However,	by	building	on	concept	of	Ba	 (Nonaka	and	Konno,	1998)	here	we	consider	 interactivity	more	as	a	
precondition	of	knowledge	emergence.	Namely,	as	occurring	not	in	a	pre-given	three-dimensional	space	yet	as	
an	ongoing,	nonlinear	process	occurring	in	a	“topological	space	the	network	of	interactions	recursively	create”	
as	a	whole,	which	requires	human	(Kakihara	and	Sørensen,	2002).	Thus,	in	our	model	(Figure	3),	whereas	data	
and	 information	 can	 be	 automatically	 processed	 and	 can	 flow	 through	 the	 virtual	 and	 physical	 systems,	
knowledge	emerges	only	through	the	involvement	of	the	human	systems	in	the	mental	layer.		
Conceptual	models	are	simplified	representations	of	target	systems.	Hence	in	the	mental	layer	we	consider	only	
the	human-machine	 interaction	 through	user	 interfaces	 and	not	human-human	 interaction.	 Furthermore,	 in	
giving	 examples	 of	 interactivity,	 we	 focus	 on	 only	 one	 aspect	 of	 SG	 dynamics	 –	 demand	 side	management	
activities,	aiming	to	keep	supply	and	demand	in	balance.		
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Figure	3	Knowledge	dynamics	in	Smart	Grid	scenario	

3.2.1 Physical	layer	

SM	 collect	 contextual	 consumption	 data	 for	 the	 whole	 smart	 home	 household	 (1).	 They	 share	 data	 and	
information	bi-directionally	and	wirelessly	both	 in	P2P	manner	 (2)	and	via	Cloud-based	auxiliary	services	 (3).	
They	can	control	and	manage	energy	consumption	of	smart	appliances,	such	as	air-conditioners.	Data	that	they	
capture	locally	is	processed	in	real-time	(4).	Data	analytics	activities	initiated	by	AMI	are	mostly	data-driven,	e.g.	
cluster	 analysis,	 which	 utilize	 consumption	 data	 to	 generate	 consumption	 patterns	 and	 to	 identify	 typical	
customer	 behavior,	 i.e.	 load	 profiles	 (Alahakoon	 and	 Yu,	 2016).	 They	 can	 provide	 their	 functionality,	 e.g.	
consumption	 data,	 as	 a	 service	 in	 a	 standalone	 mode;	 these	 data	 can	 on	 demand	 (5)	 be	 displayed	 to	 the	
consumers	via	in-Home	displays	(IHD).	SM,	furthermore,	encapsulate	their	functionality	–	in	a	form	of	data	and	
information	flows	–	to	the	cloud	for	further	processing	(6).	Since	they	are	built	by	taking	into	account	service-
oriented	 architecture	 (SOA)	 principles,	 they	 can	 be	 integrated	 with	 cloud-based	 SOA.	 This	 allows	 dynamic	
binding	of	their	functionalities	with	rule-based	workflows	defined	in	the	cloud,	and	therefore	dynamic	behaviour	
adaption,	based	on	data	feedback	they	receive.	For	example,	in	response	to	particular	conditions	such	as	high	
pricing	and	peak	periods,	bidirectional	interaction	among	SM	and	the	cloud	allows	remote	shifting	the	time	of	
use	of	home	devices. 

3.2.2 Virtual	layer	

Virtual	layer	(i.e.	a	cloud)	comprises	components	such	as	big	data	analytics	blocks	(7),	visualization	tools	(8),	and	
an	integrated	SOA	(9).	The	cloud	stores	massive	amounts	of	data	and	information	from	SO	(physical	layer)	(6),	
and	business	and	human-related	data	and	information	(mental	layer)	(14).	Here,	the	application-driven	activities	
such	as	decision	trees	and	neural	networks	are	used	and	activated	directly	by	stakeholders	and	business	needs,	
government	 policies,	 or	 environmental	 factors	 (Alahakoon	 and	 Yu,	 2016).	 For	 example,	 fine-grained	
consumption	data	can	be	merged	with	environmental	and	financial	data	for	the	purpose	of	calculating	energy	
impact	of	business	processes,	which	leads	to	system-wide	optimisations.	Furthermore,	analytics	could	be	used	
for	setting	up	dynamic	pricing	to	suit	various	customer	profiles	and	needs.	Since	these	needs	change	over	time,	
and	depend	on	factors	such	as	current	customer	activities	or	local	weather	conditions,	“in	computational	terms	
this	translates	into	an	online	learning	and	scheduling	problem	under	uncertainty”	(Ramchurn	et	al.,	2012).	The	
analysis	results	are	fed	back	as	data	and	information	to	the	physical	 layer	for	the	purpose	of	monitoring	and	
controlling.	For	example,	when	a	network	part	is	at	a	peak,	the	cloud	sends	instruction	to	switch	off	individual	
appliances.	Furthermore,	visualization	tools	generate	customized	statistical	reports	(e.g.	load	profile)	that	are	
fed	back	to	humans	(mental	layer)	who	access	these	reports	via	various	applications.	The	cloud	integrates	the	
physical	and	mental	layer	via	data	and	information	based	feedback	loops.		
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3.2.3 Mental	layer	

Mental	layer	constitutes	humans-in-the	loop	who	make	critical	decisions	with	an	aim	to	support	efficient	grid	
functioning	and	satisfying	their	own	needs.	The	virtual	layer	interacts	with	humans	through	user	interfaces	that	
are	integrated	in	various	applications.	Humans	make	sense	(12)	of	incoming	data	and	information	provided	by	
user	 interfaces,	make	decisions	 (13),	 implement	 their	decisions	 (14)	via	devices	 (e.g.	 regarding	consumption	
management),	and	receive	feedbacks	in	form	of	new	data	and	information	(e.g.	consumption	data	feedback).	
These	knowledge-intensive	activities	are	governed	by	humans’	tacit	knowledge.	Since	situations	evolve,	their	
handling	 is	 rather	 a	 recurring	 activity	 than	 a	 single	 event.	 The	 virtual	 layer	 provides	 humans	with	 a	 better	
understanding	 of	 the	 physical	 layer	 and	 its	 impact	 on	 business	 and	 consumption	 processes.	 For	 example,	
customers	 can	monitor	 electricity	 usage	 even	 down	 to	 the	 level	 of	 separate	 appliances,	which	 brings	more	
awareness	 into	 their	 electricity	usage	behavior.	As	well,	 these	applications	 constitute	a	mechanism	 to	bring	
customer	generated	data	into	enterprise	systems.	In	this	way,	customers`	demands	and	feedbacks	serve	as	real-
time	inputs	for	a	more	evidence-based	decision	making.	Thus,	service	providers	can	profile	them	for	targeted	
services	and	higher	loyalty.	

3.3 CLP	application	scenario	
CLP	Power	Hong	Kong	Limited,	power	generation,	transmission	and	distribution	company,	has	set	foundations	
for	 SG	 particularly	 with	 an	 IoT-based	 smart	 metering	 pilot	 project	 called	 “myEnergy	 Program",	 which	 was	
completed	in	2014	in	selected	residential	and	commercial	areas	in	Hong	Kong.	Pilot	adopted	SM	infrastructure	
to	 provide	 novel	 services	 focusing	 on	 behavior-based	 demand-respond	 management	 aimed	 at	 changing	
customers’	 consumption	 behavior	 and	 attitudes,	 i.e.	 to	 motivate	 more	 conscious	 and	 sustainable	 energy	
consumption	decisions.	Customers	were	able	to	track	progress	against	goals	by	setting	alerts	based	on	their	own	
consumption	patterns,	specific	 lifestyles	and	preferences.	For	example,	when	a	defined	household	electricity	
threshold	was	going	to	be	exceeded,	customized	notes	were	sent	to	customer	applications	informing	them	that	
they	are	going	to	exceed	their	usual	energy	consumption	and	offering	recommendations	 for	smarter	energy	
usage.	The	pilot	gained	positive	results,	with	an	up	to	20%	demand	reduction	in	critical	peaks.	Additionally,	data	
analytics	 experts	were	 able	 to	 better	 understand	 consumption	 usage	 patterns	 and	 to	 offer	 new	 billing	 and	
payment	options.	CLP	provides	services	such	as	assessing	 the	viability	of	community	solar	and	Meter	Online	
Service.	The	latter	 incorporates	features	such	as	“Forecasting	the	Occurring	Time	of	Peak	Demand”,	which	 is	
designed	for	customers	with	high	chiller	consumption,	due	to	ambient	temperature	and	humidity	typical	 for	
Hong	Kong's	sub-tropical	climate.	Thereby,	customers	can	anticipate	high	consumption	days	and	plan	energy	
savings.	CLP	 is,	however,	only	starting	with	SG	 journey,	which	they	perceive	as	having	a	critical	 role	 in	Hong	
Kong’s	aspirations	to	become	a	sustainable	smart	city.	Namely,	Hong	Kong	is	a	compact	and	one	of	the	most	
densely	populated	urban	cities	with	diverse	energy	users,	and	electricity	constituting	a	major	portion	of	energy	
consumption.	In	this	perspective,	real-time	monitoring	and	management	capabilities	offered	by	the	IoT,	along	
with	close	partnership	between	public	and	private	sector,	can	have	a	broader	impact	to	and	lead	to	economic	
savings	and	improvement	of	the	quality	of	living.		

4. Discussion	
Mass	employment	of	SO	results	in	flows	of	data	and	information	in	dispersed	parts	of	SG.	In	the	complexity	of	
these	 data	 -	 i.e.	 in	 heterogeneity	 of	 data	 types	 and	 sources,	 intrinsic	 semantic	 associations,	 or	 relationship	
among	networks	of	data	-	resides	its	potential	value	(Wu	et	al.,	2014),	which	is	realized	when	it	is	leveraged	to	
enable	 and	 support	 real-time	 decisions	 (Alahakoon	 and	 Yu,	 2016).	 However,	 due	 to	 emergent	 property	 of	
knowledge,	“actionable	insights”	and	knowledge	cannot	be	extracted	from	data.	They	can	only	be	co-created	in	
the	interplay	between	human	knowledge	and	data	and	information	generated	by	machines.	This	has	in	turn	an	
important	 implications	 on	 the	 perception	 of	 the	 meaning,	 purpose	 and	 design	 of	 knowledge	management	
systems	 (KMS).	 Namely,	 it	 requires	 addressing	 the	 tacit	 components	 by	 including	 users`	 perspective,	 i.e.	
exploring	 their	 cognitive	 and	 psychological	 needs	 and	 engaging	 them	 in	 the	 process	 of	 understanding	 and	
assigning	a	meaning	to	data	and	information	that	guide	their	actions	(Stenmark,	2002).	There	is	a	necessity	of	
further	development	of	human-machine	interaction	by	taking	into	account	“human	factors.”	Possible	research	
venues	involve:	development	of	visualization	techniques	for	more	effective	data	representation,	semantic-based	
intelligent	user	interaction	applications,	context-sensitive	systems	that	adapt	their	behaviour	to	situations,	and	
cloud-based	KMS	which	allow	obtaining	knowledge	demand	via	easy	access	to	various	services	on	the	internet	
(Gorecky	et	al.,	2014;	Liao	et	al.,	2011;	Sonntag	et	al.,	2017).	
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5. Conclusion	
The	 contribution	 mainly	 addresses	 two	 aspects.	 First,	 we	 reconsider	 knowledge	 theories	 and	 discuss	 how	
differences	in	understanding	of	nature	of	knowledge	have	not	merely	important	theoretical	but	as	well	practical	
implications.	Namely,	adherents	of	 the	epistemological	assumption	 that	knowledge	can	be	 formalized	might	
lead	to	the	understanding	of	organizational	systems	as	information	processing	artefacts	that	depend	on	data	
availability	and	the	ability	of	analytical	tools	to	extract	value	from	these	data.	The	assumption	that	knowledge	
is	an	outcome	of	dynamic	and	emergent	processes	of	knowing	through	context-depended	human	sense-making,	
on	 the	 contrary,	 necessarily	 leads	 to	 involving	 the	 “human	 factor”	 in	 designing	 knowledge-driven	 decision	
making	 systems.	 Second,	 by	modelling	 knowledge	 dynamics	 in	 SG	 Industry	 4.0	 scenario,	we	 exemplify	 how	
knowledge	emerges	through	interactivity	of	actors.	The	exemplified	model	represents	a	contribution	towards	
an	understanding	of	the	major	facets	of	knowledge	dynamics	in	Industry	4.0.	
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